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Recursive Bayes Deconvolution in Physical Experiments 
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In the analysis of measured spectra in physical experiments, smearing effects due to instrument resolu- 
tion are present. Correcting for these effects can be critical owing to statistical disturbances and limited 
a priori information. A recursive algorithm has been produced from the Bayes estimation theory. 
Computational aspects are discussed in different simulated examples. 

1. Introduction 

In the analysis of measured physical spectra, smearing 
effects due to the instrumental resolution are generally 
present. This situation can be represented by the fol- 
lowing mathematical model: 

y(l)= I~ f ( l ' ) s [g ( l ,  l')] dl' +v(l) (1) 

where y(l) is the measured value of the spectrum at 
the point l, f ( l )  is the resolution function of the 
instrument, s(l) is the true unknown and v(l) is the 
statistical noise of the measurement. The function 
g(l, l') takes different forms. For example, for the cor- 
rection of the slit-height effect in slit-smeared small- 
angle scattering g(l, l ' )= (lZ+ l'Z) 1/z. In the special case 
of convolution g(l, l') is equal to l -  l', so that: 

S + y(/)= _ ~  ,l') s ( l - l ' )  dl' + v(l) (2) 

= I ~ : f ( Z - l ' )  s(Z') dl' +v(l) . 

From a set of measurements y, we wish to calculate 
the true values of s(l). This can be very difficult be- 
cause: 

(1) Non-negligible statistical noise v(l) is always pres- 
ent. 

(2) Only (relatively) few measurements are made. 
(3) Often the specification of a physically reasonable 

model for the function s(l) is not possible. 
(4) The resolution function f ( l )  is not exactly known, 

but usually obtained from measurements with sta- 
tistical disturbances. 

A first approach using a least-squares approximation 
is possible, with the advantage that it requires prac- 
tically no knowledge of the statistical properties of 
disturbances (Points 1, 4). 

General assumptions about the true spectrum can 
be made, for instance, using expansions by orthogonal 
functions (Point 3). This method has been widely used 
in control theory (Eykhoff, 1963) and applied in the 
treatment of smearing problems (Hossfeld, 1968). 

These solutions can have severe oscillations with no 
physical significance, because of the few measurements 
(Point 2) and the errors involved (Points 1,3). Several 
authors have suggested different solutions. Weise 
(1968) added terms to the error function of the least- 
squares in order to damp these oscillations; Green 
(1969) used Fourier transforms and excluded the 
higher frequencies; Grosswendt (1971) smoothed the 
data using a simple averaging technique. 

In terms of statistical estimation theory, these meth- 
ods have no meaning, so that a distortion of the signal 
results. Wiener (1943) has given forms of optimal filters 
for smoothing data. Tournarie (1958) and Porteus 
(1962) have applied these results for deconvolution; 
unlike in least-squares techniques, the a priori infor- 
mation about the spectrum has to be introduced in a 
statistical way. This seems to be the best way of avoid- 
ing oscillations for small numbers of measurements. 
Nevertheless, the classical treatment with Fourier trans- 
forms, used by these authors, is very cumbersome and 
a solution for the general case [equation (1)] is not 
easily obtained. Kalman & Bucy (1961) have developed 
a Wiener filter for the sequential treatment of data 
directly in the domain of measurement. These equa- 
tions are a special application of Bayes estimation 
methods and have, to our knowledge, not yet been 
applied in physical problems. 

In § 2, some general ideas of estimation theory are 
summarized. In § 3, a general algorithm is developed, 
based on the Kalman filter. In § 4, computational 
aspects are discussed and some examples analysed. 

2. Statistical estimation theory 

Some results of statistical estimation are systematically 
used in our paper and the main points are summarized 
here. For a simple and detailed explanation see, for 
example, Sage & Melsa (1971). 

2.1 Bayes estimation procedure 
Consider the following chain of measurements: 

y(k)=f(m, v(k), k) k = l ,  . . .  n 

where y(k) is the p × 1 vector of measurements at the 
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point k, m the unknown r x 1 parameter vector to be 
estimated and v(k) represents the statistical distur- 
bances. Generally several assumptions can be made: 

(1) The statistical disturbances have a density p(v); 
(2) The unknown parameter vector m belongs to a 

known range m s~¢/. This can be described by an 
a priori density p0(m). Even in the case of deter- 
ministic parameters, it is convenient to introduce 
a priori information in a statistical way; 
In order to carry out an estimation, an error func- 
tion R(m, mM) shall be introduced, where mM is 
the parameter vector of a mathematical model. 
This function allows comparison of different esti- 
mations. 

(3) 

The Bayes estimator ~aB of m is obtained from 

S i n  [N(mM)] --* mB (4) 
m M  

where ~(mM) is the risk function 

.~(mM) :-- I ~  I~ R(m' mu) p(m, y). dm.  dr  (5) 

where y is the (n xp) x 1 vector of all y(k) 

p(m, y)=p0(y), p(m/y). (6) 
This results in 

Min [N(mM)] 
m M  

(7) 

and for different error functions R(m, raM), different 
Bayes solutions can be obtained. Only two important 
cases will be considered here. 
Case 1: minimum variance Bayes estimation 

Let 

Then: 

R(m, mM): =llm-mMll ~. (8) 

61B = e{m/y}" = l~¢/mp(m/y)dm (9) 

which means the estimator is equal to the mean value 
of the a posteriori density p(m/y), and is independent 
of Q. 

From equation (7), it follows that 

Min R(m, raM)= R(m, 6an) =ey{Trace ( M .  Q)} 10) 

where M is the covariance matrix of the estimator mB. 

Case 2: maximum a posteriori Bayes estimation 

Suppose that the function R(m, raM) takes the form 
of Fig. 1. It is easily demonstrated that equation (7) 
leads to: 

Min [~(mM) ] --~ Max [p(m/y)] --* naMgp • (11) 
m M m 

When it is possible to calculate the a posteriori density 
p(m/y) (density of m after measuring y), ffaMgp is easier 

to find than the minimum variance estimator. Apply- 
ing the Bayes rule: 

p(y/m), p0(m) 
p(m/y) = p---~(~) ......... , (12) 

it follows from equation (1 l) that 

Min [~'(mM)]--> Max [ln p(y/m)+ln p0(m)] (13) 
m M m 

because the logarithm In is a monotonic function. In 
the case where no a priori information exists, equation 
(13) reduces to the well known method of maximum 
likehood. 

2.2 Linear measurement scheme 

Consider now the linear system of equations: 

y = H . m + v  (14) 

where H is a (n ×p) × r matrix. Moreover let v and m 
have the a priori Gaussian densities N(0, V), and 
N[ffl(0), M(0)]. In this case, the minimum variance 
estimator and the maximum a posteriori estimator are 
identical. In order to obtain the maximum a posteriori 
estimator ~ MAP, p(y/m) must be first calculated. It 
results from equation (14) that 

p(y/m) -p (v  = y - H .  m) = (2~z) -"/2 . [det(V)]- 1/2 

x exp { - 0 " 5 1 1 y - n .  mll2V-1}. (15) 
After some simple manipulation, the Gaussian density 
N(ffl, M) results for p(m/y) with 

~aMAp=ffl=M. [H r . V -1 . y+M-a(0)ffl(0)] (16a) 

M = [M- 1(0) +HrV-q - I ]  -1 . (16b) 

,•I R(e) 

A-~o / 

e= m-m M 

g 

Fig. 1. Error function for the maximum a posteriori Bayes 
estimation. 

IDELAY  
Fig. 2. Recursive filter. 
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In the case where no a priori information is known 
about m, M(0) -+ oo and equation (16) yields 

i~ M = M H T V -  ly 
M = (I-ITV- q-I) -1 . (17) 

This is the Markov solution, which can also be derived 
from the maximum-likehood method. A special form 
of this builds the 'least-squares' solution with V - E ,  

~I L . s = (I-[TI-I) - 1nTy.  (18) 

2.3 Sequential algorithms 
Global methods are normally very cumbersome, 

especially when a great number of measurements or 
unknown parameters are considered. A sequential treat- 
ment of the measurements can be advisable in these 
cases. 

Suppose that, at the point k (L being the spacing of 
consecutive measurements), the vector y(k) is measured 
and that, with the help of the preceding information 
[y(1), . . . , y ( k - 1 ) ] ,  an estimate ffa ( k - 1 ) ,  with a cov- 
ariance matrix M ( k - 1 )  has been obtained. In order 
to correct i l l ( k -  1) considering the information of the 
new measurement y(k), let us introduce the a posteriori 
density • 

pk(m): =p[m/Y(1 -->. k)] (19) 
with 

Y(1 ~ k): =[y(1), . . . ,  y(k)]. (20) 

Now 
p[m, y(k)/Y(1 --, k)] 
=p[m/Y(1 --> k -  I)].  p[y(k)/V(1 --> k -  1),m] 
=p[m/Y(1 ---> k -  1), y(k)], p[y(k)/Y(1 ~ k -  1)] 

which means that 

pk(m) = pk- , (m) ,  p[y(k)/Y(1 ~ k -  1), m] 
p[y(k)/Y(1 --~ k -  1)]. (21) 

This fundamental equation gives the density pk(m) at 
the point k as a function of the density Pk-l(m) at the 
point k - 1  and of the new measurement y(k). This is 
the counterpart of equation (12) in the global case. 

In general, equation (21) can be very difficult to 
manage as the characterization of a density requires 
an infinity of its moments. In the linear Gaussian case 
alone is the solution simple. The measurement chain 
can be written" 

y(k) = t tfk)m + v(k) (22) 

for k = 1, . . .  n, where l t(k) is a p x r matrix and 

p[v(k)] = N[0, V(k)] and p0(m)= N[ffK0), M(0)I.  

It can be proved by induction that pk(m) is also Gaus- 
sian. As in equation (15), the densities p[y(k)/Y(1 
k - 1 ) ,  m] and p[y(k)/Y(1 ~ k - 1 ) ]  can be calculated 
from equation (22); the introduction of 

p,(m) = N[ffl(i), M(i)] 
results, after some manipulations, in: 

ffa ( k ) = ffa ( k ) 
= & ( k -  1 )+K(k ) [y (k ) -H(k ) .  f fa(k- 1)] (23a) 

K(k) = M ( k -  1)nr(k)[V(k) 

+ H ( k ) .  M ( k - 1 ) .  Hr(k)] -1 (23b) 

M ( k ) = [ E - K ( k ) .  H(k)].  M ( k -  1). (23c) 

y(k)  
SM(K)  

- r  0 

Resolution function f(l) m True spectrum 
/ y ,  / e ~ . . ~ i ~ \  • Measured volues 

/ \  . / .  "\\T 
o / \  ,,/C/X/; 

o t / I 'i\, 
/ o  Z I I \ \  

i l  j I " f ~ i /  , , i i  

j j i  iji 
(o) i~=0 &(o) t i Ij,l=l~j,&(i ) I k lk÷l=lk L 2Ltr, l r÷l O')r~ 

L 
Fig. 3. Deconvolution by staircase approximation. 
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These equations are a special form of the Kalman Filter• 
For the first measurement y(1), they start with ffff0), 
M(0). A simple representation can be found in Fig. 2. 
It is important to see that, when no a priori informa- 
tion about m is known [M(O) --> c~], the Markov solu- 
tion is obtained with V ( k ) - E .  

3.  D e e o n v o l u t i o n  m e t h o d  

Now, based on the preceding considerations, a general 
method for deconvolution is developed• 

3.1 D&cretization of  the convolution integral 
If no physical model can be considered, a linear 

representation of equation (2) can be obtained by 
using a staircase approximation for s(l). 

For mathematical convenience, consider the mea- 
sured points Y(lk) centred on: 

L 
lk" = 2 + ( k -  1)L (24) 

with k =  1, . . .  n. L is the distance between consecu- 
tive points (normally but not necessary constant). Con- 
sidering steps of variable length (Fig. 3) for a better 
representation of s(l), there results 

s(l ')=sM(i)=constant for l~ <l'  <l~+~ (25) 

with i = l ,  . . .  r. 
Considering n(i) measured points in each interval 

l~+1-l~ : =A(i)=n(i)  . L . 

lo: = 0 .  

The sequence {ni} can be selected to a first approxima- 
tion from the measured spectrum and in order that 
r~n ,  it is mostly convenient to put n(i) > nmi n. In many 
cases, Aft) can be constant A(i)=A.  

As can be seen from Fig. 3, the resolution function 
f ( l ' )  has to be inverted to give f ( - l ' )  and translated 
by lk, to give f ( I k - l ' )  for each measured point y(lk). 
To take into account all the measurements, the spec- 
trum sM(l') must be extrapolated for l ' < 0  and l'_> 
l'~+~. For simplicity, let us introduce r0 steps of length 
A(0) on the left and r e steps of length A(r) on the right. 
The new partition of intervals is: 

{if} : = {-roA(O), . . . ,  --A(0), 0, l; . . . .  , 

l'~+,, l'~+~ +A(r), . . . ,  l~+~ +reA(r)}.  (27) 

The corresponding unknown values of sM(i) are 

s T .  = {sM(-r0), . . . ,  sM(0), sM(1), . . . ,  

sMCr), . . . ,sM(r+rs) } .  (28) 

Introducing these relations in equation (2), we obtain 

y(k): =y(/0 

r+rF[ ~l~+lf[l ] --{- V(lk) (29) = ~. sM(i)~l, j , , k - l ' ) d l '  
i=--ro ~" i 

with 

1" 
• ~ i + ~ f ( l ~  - l ' ) d l '  .fki l, (30) 

i f (k ) :  = {fk,} • (31) 

This results finally in 

y (k )=fT(k ) ,  sM + v(k) (32) 

If an unknown background noise VB(l) is present, the 
measurement model (2) must be augmented by this 
term. In the case of linear noise 

VB(I)=AI+B. (33) 

The unknown parameters A and B may be estimated 
by transforming equation (32). With 

L2 1 ]  f r* (k )=  [ f"(k)  + ( k -  1)L 

s~t*=[s~ A B] (34) 

which results in 

y ( k ) = f r * C k ) s ~ t + v ( k )  k =  I,  . . .  n (35) 
= y . ( k )  + v( k ) 

with 

• * ( 3 6 )  yM(k) =fT*(k) .  s M. 

In the sequential algorithm (23), this form of the chain 
of measurements is immediately used with H(k) re- 
placed by fT*(k). In the classical global method (16), 
the measurements are gathered in the matrix form• 

y = F* .  s~ + v (37) 

with 
FT*: ----[f*(1) f * ( 2 )  . . .  f*(n)]. (38) 

3.2 Statistical characteristics of  unknowns 
and disturbances 
Measurement noise 

The set of measurements y is obtained by counting 
the number of neutrons that arrive in a certain time 
in each detector. In most cases neighbouring measure- 
ments are uncorrelated and the probability of count- 
ing y(k) particles is 

p[y(k)]=[yM(k)]y(k ) exp [--yM(k)] (39) 
• Lv(k)] ~ 

which means that y(k) is Poisson distributed with a 
mean value yM(k) given by equation (39). In order to 
utilize the developed algorithms a Gaussian approxi- 
mation must be considered. For y(k)>200 it is well 
known that: 

pLv(k)] ~_ N[yM(k), yM(k)] . (40) 
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Because y,u(k) is unknown, y(k) is used for the mean 
value and variance. Then 

p(v) = N(O, V) (41) 

with 

V=DIAG[y(1) ,  . . .  y(n)]. (42) 

A priori knowledge about s 
The sequential algorithms start with ~(0), S(0), when 

it is supposed that the a priori density of s(0) is Gaus- 
sian: 

p[s(0)] = N[g(0), S(0)]. (43) 

There is a simple way of determining this density. Sup- 
pose (Fig. 5) that at least a range is known where the 
true spectrum must be located. For each interval 
[l~', l* + 1] a mean value g~(0) is considered with a var- 
iance a~(0)_2,  b(i) where b(i) is the estimated width 
in the domain. In this way, a diagonal matrix S(0) 
can be constructed. 

Resolution function errors 
In most physicaI problems, the resolution function 

is not given analytically. In neutron scattering, for 
example, one measures it repeatedly with the same 
experimental instrument. Each detector then gives the 
integral of the resolution function in its range. In this 
paper, we suppose that the measurements have lasted 
long enough to eliminate strong oscillations. This can 
be done because the resolution function is measured 
once for all. A special consideration of propagation of 

errors is then not necessary and will not be considered 
here. 

3.3 Possibilities of on-line implementation 
Some of the components of the filter equations (23) 

such as the matrix F or its lines fr(k) can be calculated 
at the beginning of the experiment and stored in an 
auxiliary memory of the computer. Otherwise sub- 
optimal algorithms will be discussed, which can con- 
siderably reduce the time of computation, so that on- 
line implementation becomes possible. 

(1) For approximately constant variances of meas- 
ured points (for example with relatively high back- 
ground noise), the covariance matrix V will be equal 
to a 2 E so that the time-consuming recursion, [equation 
(23c)] of S(k) is independent of the measurements and 
can be treated off-line, once for all. The gain filter 
K(k) [equation (23b)] will also be calculated and stored 
in the auxiliary memory in this preliminary phase. 

(2) When this kind of approximation is not allowed 
[very different values of y(k)] an on-line calculation 
can also be considered, when the matrices S(k) are 
constrained to be diagonal. From the recursion [equa- 
tion (23c)], it follows for the diagonal elements that 

a~s(k)=[1-oc-lf~4(k) . a~s(k- 1)]a~s(k- 1) (44) 
with 

r 
,2 e = y ( k ) +  ~ f ~  (k). a]v(k-  1) (45) 

v = l  

f o r j = l ,  . . .  r. 

(3) Because normally the resolution function has a 
limited width, only a finite number of estimators gj are 

I 
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Sz,z(K ) 
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p.. ~ sv(K) 

~ "  GffO 

a~,.~(~ 
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Fig.  4. C o n s t r u c t i o n  o f  i n t e r m e d i a t e  va lues  fo r  the  s u b - o p t i m a l  d e c o n v o l u t i o n  m e t h o d .  
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correlated; this means that in order to use the infor- 
mation of each measurement y(k), only a vector ~o(k), 
part of the whole vector §(k), has to be considered. 

From the mechanism of convolution, which cor- 
responds to a continuous translation from lk to I~+~ of 
the inverted resolution function, the following different 
situations can occur: (a) the vectors §p(k) and §p(k + 1) 
have the same components; (b) the first component of 
§p(k) is deleted; (c) a new component has to be added 
at the end of ~p(k); (d) the two operations (b) and (c) 
are performed simultaneously. In cases (b), (c) and (d) 
an intermediate vector §~(k) results, which will be 
utilized as starting value in the recursion, equation 
(23a). Simultaneously, a starting covariance matrix 
S~(k) has to be constructed from Sp(k) (Fig. 4)" in (b) 
the first line and a column of So(k) are deleted, in (e), 
a new last column and line are added, with elements 
equal to 0 except the diagonal element which is set to 

!~z (the a priori variance value). Finally, the case 
(d)' is a combination of (b) and (c). The following 
scheme results from these considerations: 

stage k 
~j,(k); Sp(k) ~ ~,*(k); 

(Fig. 4) 

stage (k + 1) 
S;(k) --~ §v(k + 1); Sv(k + 1) 

equation (23). 

4. Computational aspects 

4.1 Structure of  programs 
A general program of deconvolution has been de- 

rived. As can be seen on the flow-chart (Fig. 5), this 
program has the following parts: 

(I) The raw data (measured points and resolution 
function) are read. Because the measured data repre- 
sent integrals of the corresponding function in the 
range of each detector, some corrections may be 
needed. For example the y(l) must be divided by L. 
To avoid this, the same scale is used for f ( l )  and s(l), 
for example L = 1. 

(2) The number of points {nt} per interval is read, 
so that the computation of all the l~ and then l'~ can 
be carried out. 

(3) The initialization of ~(0) and S(0) is worked out 
by means of the method discussed in equation (3). 

(4) Each point y(k) must be treated with the help of 
recursive equations (23); a raw vector fr*(k) must be 
calculated. The computation o f f~  1 is easily done be- 
cause the raw data already give integrals of the resolu- 
tion function; one centres f ( - l )  on the point 
L/2 + (k - 1) L and sums the ordinates o f f ( -  l) in each 
of the ro+r+rf  intervals [l*, 13+ d. 

' START ) 

/ Read measured 
spectrum y and 
resolution func- 
tion f 

/ 
/ Read {n j} number 

of points per 
interval / 

I Compute limits of 
steps of s 

it;} / 
Initialization g(O) and S(O) 

+ 

? 
I I 

Compute f : ~  

k + l ~ k  
Kk= S~f~+l 

*T * Yk+t +fk+tSkfk+t 

S~+I =sk+O'k+~--f~ts~)K~ 

Fig. 5. Flow-chart of programs. 

yes 

I 
STOP ) 
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4.2 Simulation examples 
In order to test the efficiency of the algorithm, raw 

data have been simulated with the help of a convolu- 
tion procedure. For simplicity, the sum of three Gaus- 
sian curves has been convoluted with a Gaussian reso- 
lution function. A random generator of Gaussian dis- 
tributed numbers has been utilized [equation (40)]. 

The program written in FORTRAN IV(G) has run 
under the time-sharing system CP-CMS, on the com- 
puter 360/67 IBM of Grenoble University in a virtual 
machine of 256K bytes. The indicated execution times, 
including a plot of the results, are the equivalent CPU 
time on a standard computer 360]65 IBM. The size of 
the program designed to treat up to 300 measured 
points with the estimation of a maximum of 60 param- 
eters is about 70 k bytes. 

Case 1 (Fig. 6) 
Here from the measured data, a fairly good idea of 

the line shape can be made; this means that there is 
enough a priori information about the unknown spec- 
trum to give good results. Nonetheless, the third line 
could only just be detected. 

The estimation of 23 values of the spectrum and of 
the constant noise, from 200 measured points in the 
range [0,80], with a resolution function given by 75 
points, takes about 120 see. 

Case 2 (Fig. 7) 
Three very sharp lines have been convoluted with a 

broad resolution function, so that no good a priori as- 
sumption can be made from the measured data. The 
initialization will be represented by the hachured zone. 

With 200 measured points, a choice of intervals may 
be the following: the rightmost and leftmost intervals 
of the unknown spectrum contain 50 measured points; 
the others are chosen, to a first approximation, as the 
same with 5 points. From the results, it is suspected 
that three lines are present (curve 1). Another decon- 
volution with this new i~aformation confirms this as- 
sumption (curve 2). 

The estimation of 24 values of the spectrum and of 
the constant noise, from 200 measured points in the 
range [0,60] with a resolution function given by 101 
points takes about 80 sec. 

Remarks 
The algorithm works well. Nevertheless, care must 

be taken for the initialization of some of its parameters: 
(1) The choice of the a priori density N[?,(0), S(0)] 

can be critical. When, for example, a very optimistic 
(but false) hypothesis is made, i.e. small variances com- 
bined with false mean values, the solutions can be very 
biased. In Fig. 7 it is then better to consider large values 
for the a priori variances. 
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(2) For some choices of intervals, the staircase model 
can give a bad approximation; this can be corrected 
by a better choice of interval lengths, after a first de- 
convolution. 

With a time-sharing system such as CP.CMS the 
modification of the parameters can be made easily. It 
seems to us that this kind of algorithm can ideally be 
realized with the help of interaction display techniques. 

5. A p p l i c a t i o n s  

The deconvolution method can be applied in several 
fields of physical experiments: 
- analysis of y-ray spectra; 
- determination of phonon line shapes; 
- deconvolution of neutron time-of-flight data; 
- correction of slit effects in small-angle scattering; 
- analysis of quasi-elastic scattering data. 

Fig. 8 shows the results of the deconvolution method 
applied to neutron time-of-flight data from an experi- 
ment on liquid sulphur. The resolution function has 
the typical asymmetric shape of a Be-filtered neutron 
spectrum obtained from a chopper. The measured 
spectrum is peaked at zero energy transfer (2~ ~_4 A) 
and is expected to be the convolution of the resolution 
function with the following shape: 

C 
s().) = ) ?  exp g(2). S(2) (46) 

where S(2) is symmetrical and g(2) known. 
From Fig. 8, it results that 4-06 [A]_< 2~ < 4.11 [A] 

and a second peak at 3-58 [A] _< 2z < 3.74 [A] must be 
present. Because of the symmetry of S(2), a third peak 

on the left should also be observed. This could not 
be convincingly confirmed because of the relatively 
small amplitude of the peak, and because of bad sta- 
tistics. 

By taking the model [equation (46)] directly into ac- 
count in the deconvolution, better results should be 
obtained. This can be done in the following way: 

dx ...... yM(Jl . )  = )~-- ) .  )S() .  ) -= f ( ) ' - - ) ~ ' )  • ~ ,4 
- -  - - o o  

exp g ( 2 ' ) S ( ) / ) d ) / =  *(2, 2 ' )S( ) / )d) . '  (47) 

with 
C 

f * ( 2 ,  2'): = f ( 2 -  2 ' ) .  -2,-- 4 exp g (2') . 

This problem takes the general form of equation (1). 

6 .  C o n c l u s i o n  

An algorithm for deconvolution of neutron scattering 
data has been developed with the help of Bayes estima- 
tion. The equations obtained turn out to be a special 
case of the Kalman filter, and because of their recursive 
character, can be applied in on-line situations. The 
a priori  information has been utilized in a simple way 
and allows for a solution even when a small number of 
measurements is not sufficient for the least-squares ap- 
plication. 

The staircase approximation has the advantage of 
simplicity. Nevertheless, when the statistics are bad, a 
certain number of measured points per interval may be 
needed, which contradicts the convenience of short in- 
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Fig. 8. Deconvolution of neutron time-of-flight data. 
K 

tervals for good representation; in this case, other 
models (straight lines, parabolas, polynomials) can be 
more suitable. Moreover, the choice of the a priori 
densities is often decisive and special care must be taken 
so that, when possible, systematic methods are pref- 
erable. 

A treatment of equation (1) will be considered in a 
forthcoming publication. 

The authors are very grateful to Professor Maier- 
Leibnitz for encouragement in this work and to several 
physicists of the Institute Laue-Langevin for interest- 
ing discussions and suggestions. 

Notation 

p(x): probability density of random vector x. 
p0(x): a priori probability density of random vector x. 
p(x, y): joint density of random vectors x and y. 
p(x/y): conditional density of random vector x given y. 
£=e{x} = Sxp(x)dx: expectation (mean value) of ran- 

dom vector x. 
X = e ( ( x - ~ )  (X--~)T}: covariance matrix of random 

vector x. 
N(~, X): Gaussian (normal) density of  x with mean 

value ~ and covariance matrix X. 
t{R} = S Rp(y)dy: expectation of R. 
e{x/y} = [xp(x/y)dx: conditional expectation of x 

given y. 
y(k): p x 1 measurement vector at the point k. 

y: (p x n) x 1 total measurement vector. 
Y(1 -+ k): p x k matrix of the first k measurement vec- 

tors y(i). 
H(k): partial p x r matrix in the measurement chain. 
H:  total (n x p) x r matrix in the measurement chain. 
6~(y): r x 1 estimate vector of the unknown m. 
ffa(O): a priori mean value of ~ .  
M(0): a priori covariance matrix of 61. 
pk(m) [equation (19)]: a posteriori density of vector m 

given the measurement matrix Y(1 ~ k). 
ffa(k) =ffl(k): estimate at the point k given Y(1 ~ k). 
M(k): covariance of estimate vector at the point k. 
v: vector of statistical disturbances with mean value 0. 

References 
EV~:HOFF, P. (1963). IEEE Trans. Autom. Control, ACS, 

347-357. 
GraVEN, D. W. (1969). Nucl. Instrum. Methods, 76, 349-356. 
GROSSWENDT, B. (1971). Nucl. Instrum. Methods, 93, 

461-472. 
HOSSEELD, F. (1968). Acta Cryst. A24, 643-650. 
KALMAN, R. & BucY, R. S. (1961). Trans. ASME,  Set. 

D, J. Basic Eng. 83, 95-108. 
PORTEUS, J. O. (1962). J. Appl. Phys. 33, 700-707. 
SAGE, A. P. & MELSA, J. L. (1971). Estimation Theory with 

Applications & Communications and Control. New York: 
McGraw-Hill. 

TOtmNAPaE, M. (1958). Bull. Soc. Franc. Mindr. Crist. 81, 
278-286. 

WEISE, K. (1968). Nucl. Instrum. Methods, 65, 189-194. 
WIENER, N. (1943). The Extrapolation, Interpolation and 

Smoothing of Stationary Time Series. New York: Wiley. 


